I V AU=AUDZ 729 CHARLES STARK 'DRAPER LAB INC CAMBRIDGE MA
JOVIAL STRUCTURED DESIGN DIAGRAMMER (JSDD). VOLUME I« REPORT SU-ETC(U,
FEB 78 6 GODDARD* M WHITWORTH » E STROVINK F30602-T6-C-0§06
UNCLASSIFIED R=-1120-VOL~-1 RADC~-TR=78=9=-VOL-1

| EEEEEEEEE

e ————————— e e e ———

j

""l |0 e 2
=Lg
TR

L
ML2s s e

-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 %

g

N

EFRT1A 0L 1]

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE s tEAD INSTRUCTIONS

' NUM 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-78-9, Vol I (of four)

Al e

E. fStrovink
ORMING ORGANIZATION NAME AND ADDRESS

'I'he Charles Stark Draper Laboratory, Inc.

555 Technology Square 7

Cambridge MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISIM)

Griffiss AFB NY 13441

AREA & WORK UNIT NUMBERS

P.E. 62702F
J.0. 55811412

PROGRAM ELEMENT, PROJICT/A‘K

. MONITORIN NAME & different from Controlling Oftice)
Same 6) 554 1 UNCLASSIFIED
s Dtc&“ﬂ'lcl“oﬂ DOWNGRADING
1 I N/A SCHEOULE

6. DISTRIBUTION STATEM (of

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

8. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald VanAlstine (ISIM)

[19. KEY WORDS (C on alde If and identity by Block number)
Structured programming Puprocu-or
Structured design diagram Flowcharter
Structured extension JOVIAL J3
Parse Invocation diagram
Parser generator

% ABSTRACT (Continue on olde i and ly by block ber)

\‘rhil report summarizes the implementation of the prototype JOVIAL
structured Design Diagrammer (JSDD).

DD ,j2u's: 1473 eormion o 1 wov ¢8 18 ossoLeETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

T

TRy TR

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

- ;‘
> by oo L. :
- \
i
y 3
v ~
T
’
5 1 { %
.
' 4

UNCLASSIFIED
SECURITY CLASSIPICATION OF THIS PAGE(When Date Bntered)

T BN Ay S R ot e i e T

S

EVALUATION

The objective of this effort was to implement a system to
automate the documentation of structured JOVIAL source statements.
This system, the JSDD, functions as an aid to the programmer/
design engineer in producing software systems written in accordance
with structured programming conventions. This development falls
within the goals of RADC TPO V, specifically in the 3.3 Tools and
Procedures area.

The Charles Stark Draper Laboratory, Inc. implemented the JSDD
on the Honeywell 6180 Computer System at RADC using the GCOS III
Encapsulator operating under the MULTICS remote user system. The
JSDD is designed to be transportable to batch, as well as remote
batch GCOS operating environments. It was written using structured
JOVIAL syntax and contains a built-in JOVIAL pre-compiler for code translation
for the existing target JOVIAL J3 compiler currently available on the H6180.
As a test case, the JSDD modules were used as source data for the system
and appeared to generate correct code when passed on to the JOVIAL J3

compiler.

The JSDD provides a graphic representation of the sometimes complex
logical sequences that constitute the structure of largescale software
development efforts. It is for this reason that the Design Diagrammer
fills an important place in the spectrum of software tools currently
being developed under the RADC advanced software program.

St L N AT

DONALD L. VANALSTINE
Project Engineer

REPORT SUMMARY

This document was produced to satisfy the requirements
of contract number F30602-76-C-0408 with the Rome Air
Development Center. It is one of four companion
volumes?

* JOVIAL Structured Design Diagrammer (JSDD)
Report Summary

-This document is a summary of the contents of
the JSDD Final Report.

* JOVIAL Structured Design Diagrammer (JSDD)
Final Report

This volume presents the design techniques
for implementing the JSDD and describes the
use of Structured Design Diagrams.

* JOVIAL Structured Design Diagrammer (JSDD)
Program Description

This volume presents a detailed description
of the program implementation for purposes of
maintaining and/or modifying the JSDD.

* JOVIAL Structured Design Diagrammer (JSDD)
User’s Manual

This volume presents the user’s view of the
JSDD along with user options and other
information about running the program.

Acknowledgement

This report was prepared by The Charles Stark Draper Laboratory,
Ince, under Contract F30602-76-C-0408 with the Rome Air
Development Center at Griffis Air Force Base.

Especial credit 1is due Margaret Hamilton, who pioneered
principles of Structured Programming at Draper Laboratory.
Saydean Zeldin originally suggested the symbology implemented in
the output of the JOVIAL Structured Design Diagrammer. Thanks
should go also to William Daly, who created the Structured Design
Diagrammer for the HAL language (currently being used on the NASA
Space Shuttle pro ject). The authors are 1indebted to Victor
Voydock for his invaluable assistance in implementing a complete
MULTICS user interface which was used successfully for the
duration of the JSDD implementation. The authors are also
grateful to J. Barton DeWolf whose many suggestions were of great
assistance throughout this effort,

R

le Introduction

In recent years, the digital computer software industry has
directed considerable effort toward the development of
design and implementation methodologies to ensure the
sufficiency, reliability, and maintainability of software:
systems. The most widely known product of this effort |is
the 1loosely defined set of design and programming practices
called "Structured. Programming."

Structured Programming does not constitute a complete
software development methodology. Rather, it is a
collection of general guidelines for use by software
designers and implementors. As such, it provides no uniform '
approach to system design and offers no method of evaluating
system sufficiency with respect to requirements or design.
Despite these shortcomings, adherence to Structured
Programming: principles can be of great assistance - in
producing software systems which are reliable and
intellectually manageable.

The techniques of Structured Programming are sufficiently
general to allow system developers a tremendous amount of
stylistic freedom. However, the generality of the
techniques has made the development of a standard approach
to software analysis extremely difficult. The prototype
JOVIAL Structured Design Diagrammer (JSDD) is the first
component of an integrated software analysis and
documentation system which will address itself to this task.

The JSDD processes digital computer programs written in
either JOVIAL J3 or Extended JOVIAL J3. Extended JOVIAL J3
is standard JOVIAL J3 with the addition of structured
extensions.

The JSDD 1is 1implemented in JOVIAL J3 as a three program
system that is designed to run on a Honeywell Information
Systems, Inc., Series 6000 computer supporting GCOS Version
1/G. The implementation work was conducted on the Rome Air
Development Center’s MULTICS computing facility via the ARPA
Network. Development work was performed on the GCOS
Encapsulator which is available under the MULTICS operating
system. The MULTICS environment provided most of the
software tools that were employed during the implementation.

The JSDD is an automated analysis and documentation system
which produces two types of diagrams: Structured Design

0 AT W AL AR B S e | Mo,

Diagrams (SDDs) and Invocation Diagrams.
2. Structured Design Diagram Description

Structured Design Diagrams (SDDs) provide a graphic two
dimensional display of the .nested logical sequences that
define the structure of a computer program.

SDDs for JOVIAL J3 are constructed from two basic structural
elements® pentagonal and rectangular boxes. The rectangular
box is used to contain JOVIAL statements that are executed
in sequence. Pentagonal boxes are used to contain JOVIAL
constructs which modify other JOVIAL constructs (e.g., an If
or For Clause).

3. Invocation Diagram Description

Invocation Diagrams are a display of a software system’s
functional (calling) structure. The Invocation Diagrammer

~produces two different outputss (1) a 1list of procedures

that are members of one or more recursive invocation loops,
and (2) the Invocation Diagram itself.

The first output, if it appears on the diagram, occurs
before the actual diagram under the heading "ULTIMATELY
SELF-RECURSIVE." Under it are listed all procedures that
call themselves, either directly or indirectly. An example
of a direct recursive call is a procedure which contains, as
part of its code, a call to 1itself. Indirectly recursive
calls are best illustrated, again, by an example. Suppose
procedure A can call procedure B which can call procedure C.
If, as part of its code, procedure C contains a call to
procedure A, all three procedures (A, B, and C) can
theoretically call themselves.

4. Design of the JOVIAL Structured Design Diagrammer

The JSDD has two conceptual passes. "Pass 1" (consisting of
the Design Diagram Database Generator) performs the tasks of
analyzing the syntax of an input program and creating a data
base for use by the second pass. "Pass 2" (consisting of
the Design Diagram Generator and the Invocation Diagrammer)
uses the data base created by Pass | to construct Structured
Design Diagrams (SDDs) and Invocation Diagrams. A two pass
design 1is motivated by two factors. First, it is desirable
to separate language dependent functions from language
independent functions. Such a separation facilitates the

adaptation of Pass 2 to target languages other than JOVIAL
J3. Second, the two pass design provides a great deal of
flexibility in the formatting of diagrams. Pass 2 of the
JSDD can produce diagrams having a wide variety of formats
from the data base produced by a single Pass | execution.

In parsing input source programs, Pass | acts as a
table-driven deterministic pushdown automaton (DPDA). The
tables which drive the Pass | parse are the product of an
LALR(k) parser generator that accepts a syntactic
description of a language as 1input and outputs parsing
tables for the language.

The two Pass 2 programs (the Design Diagram Generator (DDG)
and Invocation Diagrammer) interpret the Pass | generated
data base, and create diagrams in accordance with the
formatting specifications in the DDG options compool (see
User’s Manual). The DDG is implemented as a two part
program. First it maps out the Structured Design Diagram
and creates a temporary data base containing the mapping
information. Only then does it produce the actual diagram.
This strategy allows it to calculate forward and backward
referencing information (in case a diagram overflows the
page widthy and a Table of Contents, without committing
prematurely to any hard-copy output. If adjustments need to
be made in the diagram, the temporary data base. can be
modi fied easily.

5. Defining the JOVIAL J3 Syntax

The parsing tables used by Pass | are generated by an
LALR(k) parser generator. The parser generator accepts the
syntactic description of a language (in BACKUS-NAUR form)
and produces the parsing tables for the language.

The parser generator can produce tasbles for any LALR(k)
grammar where k is finite.

There is no grammar processable by a left to right parser
generator (having an finite upper bound on required
lookahead) which will produce tables which will parse all
JOVIAL J3 programs and which will parse no inputs which are
not JOVIAL J3 programs.

In order to sidestep this problem, the JOVIAL J3 grammar has
been “/expanded’/ so that all JOVIAL J3 programs can be
parsed. However, as a result of this expansion, there are

ARG IS I AR

sentences which the grammar can generate which are not valid
JOVIAL J3 programs.

The syntax of JOVIAL J3 is relatively complex for a
programming language. This complexity requires that JOVIAL’s
BNF description contain a very large number of productions.
In attempting to generate parsing tables, it was found that
the size of JOVIAL’s BNF description exceeded an internal
limit imposed upon the parser generator’s input grammars. In
order to avoid a costly investigation of the parser
generator’s limits, work on the JSDD was based on an early,
slightly .inaccurate version of the JOVIAL grammar. The
Design Diagrammer Data Base Generator has been adjusted to
enable it to successfully parse the full set of valid JOVIAL
programs’.

6. The Structured Extensions to JOVIAL J3°

Since JOVIAL J3 1lacks certain structured programming
mechanisms which eliminate the need for Goto statements,
these mechanisms have been added as allowable programming
features in programs submitted to the JSDD. It 1is assumed
that such programs would have to be subjected to a
preprocessor before submission to a JOVIAL J3 compiler.
Such a preprocessor has been supplied as a deliverable item
with the JSDD.

The current JOVIAL J3 structured extensions ares
1) The DO WHILE LOOP
2) The DO UNTIL LOOP
3) The CASE STATEMENT

Programs incorporating structured extensions are translated
into standard JOVIAL J3 programs by the JOVIAL Extended
Structures Translator (JEST preprocessor). JEST is a PL/I
program implemented on the RADC MULTICS system.

7. Conclusions and Recommendations

From the implementor’s point of view the JOVIAL J3 language
was not a good choice of a programming language in which to
implement the JSDD. For instance, the JOVIAL J3 compiler
supplied for use on this contract was incapable of
optimizing the JSDD programs. Even if this were not the
case, the JSDD would still run more slowly than necessary,
because much computer time is consumed performing operations
for which the JOVIAL J3 compiler is not very efficient. For

example, a major shortcoming of the compiler is that it does
not support random access output operations on disk files.
This induces the JSDD to consume great amounts of computer
time doing double buffered 1/0, and requires the inclusion
of additional software modules in the JSDD computer
programs. .

Two additional aspects of the JOVIAL J3 language render it
less than desirable for the JSDD application or for
implementing compiler-like tools 1in general. First, the
static nature of JOVIAL’s data handling makes it difficult
to do dynamic memory management. Second, JOVIAL does not
contain string handling constructs that are naturally suited
to compiler-like programming. The outstanding difficulty
with the JOVIAL character string manipulation capability is
that the current string length and the "declared" maximum
string length for a string variable are not available at
execution time. In- order to circumvent the string handling
difficulties, the character string handling package is
incorporated into each JSDD program. This package offers
string operations such as substring and concatenation.

Despite the difficulties attendant to the implementation,
the JSDD produces Structured Design Diagrams of high
quality. The JOVIAL programmer should find these diagraams
to be of great assistance during program design and
implementation as well as being useful for documentation
purposes. The Invocation Diagrammer produces an output that
is extremely useful and probably should 1long have been a
standard feature of commercial compilers. The prototype
JSDD has been designed such that it can also serve as the
nucleus of a comprehensive automated documentation system
for JOVIAL programs, should the construction of such a
system be desired at a later time.

